BeneVision N22/N19

Patientenmonitor

Mechanische Daten
Gewicht

Umfasst Haupteinheit mit Akku, Display mit Griff und Navigationsknopf; iView-Modul und Wi-Fi-Modul.

N22:	$11,5 \mathrm{~kg}$
N19:	10,3 kg
Größe	Einschließlich Haupteinheit, Display und Displaygriff.
N22:	$641 \times 383 \times 115 \mathrm{~mm}$ (Hochformat)
	$566 \times 458 \times 115 \mathrm{~mm}$ (Querformat)
N19:	$584 \times 348 \times 115 \mathrm{~mm}$ (Hochformat)
	$509 \times 423 \times 115 \mathrm{~mm}$ (Querformat)
Haupteinheit:	$268 \times 268 \times 68 \mathrm{~mm}$
Anzeige	
Typ	Kapazitives medizinisches TFT LCD-Display mit
	Multitouch-Unterstützung.
	Drehbares Display (Hoch-und Querformat)
Displayauflösung	1680×1050 Pixel

N22:
N19:
Wellenformen
EKG
Erfüllt die IEC-Standards 60601-2-27 und 60601-2-25.
Kanalsets
3-Kanal:
5-Kanal:
6-Kanal:
12-Kanal:
Abtastgeschwindigkeit $\quad 6,25 \mathrm{~mm} / \mathrm{s}, 12,5 \mathrm{~mm} / \mathrm{s}, 25 \mathrm{~mm} / \mathrm{s}, 50 \mathrm{~mm} / \mathrm{s}$
Verstärkungsauswahl $\quad \times 0,125, \times 0,25, \times 0,5, \times 1, \times 2, \times 4$, automatisch
Kurvenformat
Standard, Cabrera
Potenzielle Toleranz des $\pm 500 \mathrm{mV}$
Elektroden-Offsets
Bandbreite
Diagnosemodus: 0,05 bis 150 Hz
Monitormodus: $\quad 0,5$ bis 40 Hz
Operationsmodus: 1 bis 20 Hz
ST-Modus:
0,05 bis 40 Hz
Hochfrequenzbereich (für 12-Kanal-EKG):
Auswahl zwischen $350 \mathrm{~Hz}, 150 \mathrm{~Hz}, 35 \mathrm{~Hz}, 20 \mathrm{~Hz}$
CMRR
Diagnostik: $\quad>90 \mathrm{~dB}$
Monitor-, Operations-, ST-Modus:
$>105 \mathrm{~dB}$ (mit aktiviertem Notch-Filter)
Pulserkennung
Amplitude:
Breite:
Anstiegszeit:
Defibrillator-Schutz
Defib.-Schutz
Wiederherstellungszeit
ESU-Wiederher- ≤ 10 s
stellungszeit
Inkl. Algorithmus für Glasgow-12-Kanal-Ruhe-EKG.
Umfasst Mindray Multi(4)-Kanal-EKG-Monitoralgorithmus.
(* Die EKG-Spezifikationen entsprechen denen des MPM
Platinum-Moduls.)
Herzfrequenz
Messbereich
Erwachsene: 15 bis 300 bpm
Kinder/Neugeborene: 15 bis 350 bpm
Genauigkeit ± 1 bpm oder $\pm 1 \%$, je nachdem, welcher Wert größer ist.
Auflösung
Arrhythmieanalyse
Patient
Erwachsene/Kinder/Neugeborene.
Überwachte Arhythmien Asystole, VFib/VTac, VTac, Vent. Brady Extr. Tachy, Extr. Brady, Vrhythm, PVCs/min, Pausen/min, Couplet, Bigeminy, Trigeminy, R auf T, PVCs ausführen, PVC, Tachy, Brady, QRS ausgelassen, PNP, PNC, Multif. PVC, Nonsus. VTac, Pause, Irr. Rhythmus, AFib.
ST-Streckenanalyse
Patient
Erwachsene/Kinder.
Bereich
$\pm 2 \mathrm{mV}$ bis $\pm 700 \mathrm{mV}$
0,1 bis 2 ms
10 bis $100 \mu \mathrm{~s}$ (ohne Overshoot)
Isolationswiderstand 5000 VAC (360 J)
Defibrillation
$\leq 5 \mathrm{~s}$
≤ 10 s 1680×1050 Pixel

22 Zoll, 178°-Blickwinkel
19 Zoll, 170°-Blickwinkel
Bis zu 16 Wellenformen
Bis zu 13 Wellenformen (im Querformat)
tomatische 3/5/6/12-Kanalerkennung
I, II, III
I, II, III, aVR, aVL, aVF, V
I, III, III, aVR, aVL, aVF, Va, Vb
III, III, aVR, aVL, aVF, V1 bis V6
$\pm 8 \mathrm{mV}$ (p-p)
500 mV

Mitt. Bereich
Erwachsene: $\quad 15$ bis 260 mmHg
Kinder: $\quad 15$ bis 215 mmHg Neugeborene:
Genauigkeit
Max. mittlerer $\quad \pm 5 \mathrm{mmHg}$
Fehler:
Max. Standardabweichung:
8 mmHg
Manschetten-Entlüftungstechnik
Stufenentlüftung
Aufblasen der Manschette
Erwachsene: $\quad 80$ bis 280 mmHg (Standard: 160 mmHg)
Kinder: $\quad 80$ bis 210 mmHg (Standard: 140 mmHg)
Neugeborene: $\quad 60$ bis 140 mmHg (Standard: 90 mmHg)
Überdruckschutz
Erwachsene/Kinder: $297 \pm 3 \mathrm{mmHg}$
Neugeborene: $\quad 147 \pm 3 \mathrm{mmHg}$
Max. Messzeit
Erwachsene/Kinder: 180 Sek
Neugeborene: 90 Sek
Venenstau Ja
Pulsbereich $\quad 30$ bis 300 bpm
Pulsgenauigkeit $\quad \pm 3$ bpm oder $\pm 3 \%$, je nachdem, welcher Wert größer ist
IBP
Erfüllt den IEC-Standard 60601-2-34.
Anzahl Bis zu 8 Kanäle

Messbereich - $\quad 50$ bis 360 mmHg
Auflösung $\quad 1 \mathrm{mmHg}$
Genauigkeit $\quad \pm 1 \mathrm{mmHg}$ oder $\pm 2 \%$, je nachdem, welcher
Wert größer ist (ohne Berücksichtigung von Sensorfehlern)
Empfindlichkeit
Impedanzbereich
PPV-Bereich
PAWP
ICP-Messung Unterstützung
Unterstützt Kurvenüberschneidung.
Pulsbereich
Pulsgenauigkeit $\quad \pm 1 \mathrm{bpm}$ oder $\pm 1 \%$, je nachdem, welcher Wert größer ist
Herzminutenvolumen
Methode
Messbereich
Auflösung
Genauigkeit
TB-Bereich
TB-, TI-Genauigkeit
TB-, TI-Auflösung
PiCCO
Parameter Messbereich Variationskoeffizient
CCO $\quad 0,25$ bis $25,01 / \mathrm{min}$ ariations
C.O. $\quad 0,25$ bis $25,0 \mathrm{l} / \mathrm{min} \quad \leq 2 \%$

GEDV
SV
EVLW
ITBV
(Variationskoeffizient wird mit synthetischen und/oder
Datenbankwellenformen gemessen (Labortests). Variationskoeffizient = SD/mittlerer Fehler.)

TB-Bereich
TB-, TI-Genauigkeit
TB-, TI-Auflösung pArt/pCVP-Bereich pArt/pCVP-Genauigkeit
ScvO_{2}
Bereich
Genauigkeit:
IKG
Methode
HF-Bereich
HMV-Bereich
SV-Bereich

23 bis $43^{\circ} \mathrm{C}\left(73,4\right.$ bis $\left.109,4^{\circ} \mathrm{F}\right)$
$\pm 0,1^{\circ} \mathrm{C}$ (ohne Sensor)
$0,1^{\circ} \mathrm{C}$
-50 bis 300 mmHg
$\pm 1 \mathrm{mmHg}$ oder $\pm 2 \%$, je nachdem, welcher Wert größer ist

Messparameter: ACI, VI, PEP, LVET, TFI, TFC, HR, C.O., C.I., SV, SVI, SVR, SVRI, PVR, PVRI, LCW, LCWI, LVSW, LVSWI, STR, VEPT
Kontinuierliche Herzleistungsschnittstelle
Gemessene Parameter Übereinstimmend mit CCO-Parametern von Vigilance II ${ }^{\oplus}$, Vigileo ${ }^{\text {™ }}$ oder EV1000
Vigilance II: CCO, CCI, C.O., C.I., SV, SVI, SVR, SVRI, RVEF, EDV, EDVI, ESV, ESVI, TB, $\mathrm{SaO}_{2}, \mathrm{VO}_{2}, \mathrm{O}_{2} \mathrm{EI}, \mathrm{DO}_{2}, \mathrm{ScvO}_{2}$, $\mathrm{SvO}_{2}, \mathrm{SQI}$
Vigileo: $\quad \mathrm{CCO}, \mathrm{CCI}, \mathrm{SV}, \mathrm{SVI}, \mathrm{SVR}, \mathrm{SVRI}, \mathrm{ScvO}_{2}, \mathrm{SvO}_{2}$ EV1000: CCO, CCI, CO, CI, SV, SVI, SVV, SVR, SVRI, GEF, CFI, GEDV, ITBV, ITBI, EVLW, EVWI, PVPI

Artema-Nebenstrom CO_{2}
Erfüllt den ISO-Standard 80601-2-55
Messbereich

etCO $_{2}:$	0 bis 150 mmHg
O_{2} (optional):	0 bis 100%

CO_{2}-Genauigkeit

0 bis $40 \mathrm{mmHg}:$	$\pm 2 \mathrm{mmHg}$
41 bis $76 \mathrm{mmHg}:$	$\pm 5 \%$ des Werts

77 bis $99 \mathrm{mmHg}: \quad+10 \%$ des Werts
100 bis $150 \mathrm{mmHg}: \pm$ ($3 \mathrm{mmHg}+8 \%$ des Wertes)
O_{2}-Genauigkeit

0 bis $25 \%:$	$\pm 1 \%$
25,1 bis $80 \%:$	$\pm 2 \%$
80,1 bis $100 \%:$	$\pm 3 \%$

Auflösung
etCO 2 : $\quad 1 \mathrm{mmHg}$
O_{2} (optional) : $\quad 1 \%$
Proben Flow-Rate
Erwachsene/Kinder: $120 \mathrm{ml} / \mathrm{min}$ (mit oder ohne O_{2}-Überwachung) Neugeborene: $\quad 70 \mathrm{ml} / \mathrm{min}$ oder $90 \mathrm{ml} / \mathrm{min}$, auswählbar $90 \mathrm{ml} / \mathrm{min}$ (mit O_{2}-Überwachung)
Genauigkeit der Proben Flow-Rate
$\pm 15 \mathrm{ml} / \mathrm{min}$ oder $\pm 15 \%$, je nachdem, welcher Wert größer ist.
Aufwärmzeit $\quad 90 \mathrm{~s}$ (maximal), 20 s (normal)
Gemessen mit einer Wasserfalle für Neugeborene und einer $2,5 \mathrm{~m}$ langen
Probenleitung bzw. einer Wasserfalle für Erwachsene und einer 2,5 m
langen Probenleitung für Erwachsene
Anstiegsdauer
etCO: $\quad \leq 250 \mathrm{~ms}$ bei $70 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für Neugeborene)
$\leq 250 \mathrm{~ms}$ bei $90 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für
Neugeborene)
$\leq 300 \mathrm{~ms}$ bei $120 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für
Erwachsene)
O_{2} (optional): $\quad \leq 800 \mathrm{~ms}$ bei $90 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für
Neugeborene)
$\leq 750 \mathrm{~ms}$ bei $120 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für
Erwachsene)
Probeverzögerungszeit etCO ${ }_{2}$:
$\leq 5,0$ s bei $70 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für Neugeborene)
$\leq 4,5 \mathrm{~s}$ bei $90 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für Neugeborene) $\leq 5,0$ s bei $120 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für Erwachsene)
$\leq 4,5 \mathrm{~s}$ bei $90 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für Neugeborene) $\leq 5,0 \mathrm{~s}$ bei $120 \mathrm{ml} / \mathrm{min}$ (Wasserfalle für Erwachsene)
awRR-Bereich 0 bis 150 rpm
awRR-Genauigkeit 0 bis $60 \mathrm{rpm}: \quad \pm 1 \mathrm{rpm}$ 61 bis $150 \mathrm{rpm}: \quad \pm 2 \mathrm{rpm}$
Apnoe Zeit $\quad 10,15,20,25,30,35,40 \mathrm{~s}$
Bietet Parameter für $\mathrm{VCO}_{2}, \mathrm{VO}_{2}, \mathrm{MVCO}_{2}, \mathrm{MVO}_{2}, \mathrm{EE}, \mathrm{RQ}$ während der
Überwachung mit RM-Modul.
Oridion Microstream CO_{2}
Messbereich $\quad 0$ bis 99 mmHg

Auflösung $\quad 1 \mathrm{mmHg}$
Genauigkeit
0 bis $38 \mathrm{mmHg}: \quad \pm 2 \mathrm{mmHg}$ 39 bis $99 \mathrm{mmHg}: \quad \pm 5 \%+0,08 \%$ des Werts -38 mmHg
Proben Flow-Rate
Startzeit $\quad 30 \mathrm{~s}$ (normal) $50^{-7,5}+15 \mathrm{ml} / \mathrm{min}$

Reaktionszeit 2,9 s (normal)
awRR-Bereich 0 bis 150 rpm
awRR-Genauigkeit

0 bis $70 \mathrm{rpm}:$	$\pm 1 \mathrm{rpm}$
$711 \mathrm{bis} 120 \mathrm{rpm}:$	$\pm 2 \mathrm{rpm}$
$121 \mathrm{bis} 150 \mathrm{rpm}:$	$\pm 3 \mathrm{rpm}$

121 bis 150 rpm :
Apnoe Zeit 10, 15,
Capnostat-Hauptstrom CO_{2}
Messbereich $\quad 0$ bis 150 mmHg
Auflösung $\quad 1 \mathrm{mmHg}$
Genauigkeit
0 bis $40 \mathrm{mmHg} \quad \pm 2 \mathrm{mmHg}$
41 bis $70 \mathrm{mmHg}: \quad \pm 5 \%$ des Werts
71 bis $100 \mathrm{mmHg}: ~ \pm 8 \%$ des Werts
101 bis $150 \mathrm{mmHg}: \pm 10 \%$ des Werts
Anstiegszeit $<60 \mathrm{~ms}$
awRR-Bereich 0 bis 150 rpm
awRR-Genauigkeit- $\pm 1 \mathrm{rpm}$
Genauigkeit
Bietet Parameter für $\mathrm{VCO}_{2}, \mathrm{MVCO}_{2}, \mathrm{FeCO}_{2}$, SlopeCO 2 , Vtalv, MValv, Vdaw, Vdaw $/ \mathrm{Vt}$, Vdalv , $\mathrm{Vdalv} / \mathrm{Vt}$, Vdphy , $\mathrm{Vd} / \mathrm{Vt}$ während der Überwachung mit dem RM-RM-Modul.
Narkosegase
Erfüllt den ISO-Standard 80601-2-55.

awRR-Bereich	4 bis 120 rpm
Auflösung	
Fluss	0,1 $1 / \mathrm{min}$
PAW	$0,1 \mathrm{cmH}_{2} \mathrm{O}$
MVe/MVi	0,01 $\mathrm{l} / \mathrm{min}(\mathrm{MVe} / \mathrm{MVi}<10 \mathrm{l} / \mathrm{min}$)
	$0,1 / \mathrm{min}(\mathrm{MVe} / \mathrm{MVi} \geq 10 \mathrm{l} / \mathrm{min})$
TVe/TVi	1 ml
awRR:	1 rpm
Genauigkeit	
Fluss	Erwachsene/Kinder: $\pm 1,2 \mathrm{l} / \mathrm{min}$ oder $\pm 10 \%$ des
	Werts, je nachdem, welcher Wert größer ist.
	Kleinkinder: $\pm 0,5 \mathrm{l} / \mathrm{min}$ oder $\pm 10 \%$, je nachdem, welcher Wert größer ist.
PAW	$\pm 3 \%$ des Werts
MVe/MVi	$\pm 10 \%$ des Werts
TVe/TVi	Erwachsene/Kinder: $\pm 10 \%$ oder $\pm 15 \mathrm{ml}$, je nachdem, welcher Wert
	größer ist.
	Kleinkinder: $\pm 10 \%$ oder $\pm 6 \mathrm{ml}$, je nachdem, welcher Wert größer ist.
awRR	$\pm 1 \mathrm{rpm}$ (4 bis 99 rpm)
	$\pm 2 \mathrm{rpm}$ (100 bis 120 rpm)
Bietet Loopanzeige.	
Zu den Überwachungsparametern gehören PEEP, Pmean, PIP, Pplat, PEF,	
PIF, MVe, MVi, TVe, TVi, RR, I:E, FEV1.0, Compl, RSBI, NIF, WOB, RAW. rSO_{2}	
Patient	Erwachsene/Kinder/Neugeborene.
Methode	INVOS, NIRS (Near Infrared Spectroscopy)
Anzahl	Bis zu 4 Kanäle
Messbereich	15 bis 95%
NMT	
Erfüllt den IEC-Standard 60601-2-10	
Sensortyp	Acceleromyographiesensor
Stimulationsmodi	ST, TOF, PTC, DBS3.2, DBS3.3
Bereich der Stimulationsstromstärke	
	0 bis 60 mA
Bereich der Stimulationsstromstärke	
	$\pm 5 \%$ oder $\pm 2 \mathrm{~mA}$, je nachdem, welcher Wert größer ist.
Breite des	100, 200 oder 300μ s, einphasige Rechteckpuls
Stimulationspulses	
Genauigkeit der Breite des Stimulationspuls$\pm 10 \%$	
Max. Ausgangsspannung 300V	
BISx/BISx4	
Erfüllt den IEC-Standards 60601-2-26.	
Methode	Bispektraler Index
Impedanzbereich	0 bis $999 \mathrm{k} \Omega$
EEG-Bandbreite	0,25 bis 100 Hz
BIS-Bereich	0 bis 100 (BIS, BIS L, BIS R)
SQI-Bereich	0 bis 100\% (SQI, SQI L, SQI R)
ASYM	0 bis 100\%
DSA-Trend	Ja
EEG	
Erfüllt den IEC-Standards 60601-2-26.	
EEG-Kanäle	Bis zu 4 Kanäle
Montagemodus	Bipolarer Modus, referenzieller Modus
Eingangssignalbereich	- 2 mVp -p bis +2 mVp -p
Max. Eingabe-Offset	$\pm 500 \mathrm{mV}$
CMRR	$\geq 100 \mathrm{~dB}$ bei $51 \mathrm{k} \Omega$ Ungleichgewicht und 60 Hz
Rauschen	$\leq 0,5 \mu \mathrm{Vrms}(1 \mathrm{~Hz}$ bis 30 Hz)
Differenzielle Eingangsimpedanz	
	$>15 \mathrm{M} \Omega$ bei 10 Hz
Elektrodenimpedanz	
Bereich	0 bis $90 \mathrm{k} \Omega$
Genauigkeit	$\pm 1 \mathrm{k} \Omega$ oder $\pm 10 \%$, je nachdem, welcher Wert größer ist
Frequenz der	1024 Hz
Signalerfassung	
Analoge Bandbreite	0,5 bis 110 Hz
Spektralanalyse	SEF, MF, PPF, TP, Delta, Theta, Alpha und Beta
Trend	DSA, CSA
tcGas	
Schnittstellen mit TCM CombiM oder TCM TOSCA- bzw. SenTec	
SDM-Monitor.	
Messbereich	
tcpCO_{2}	5 bis 200 mmHg
tcpO_{2}	0 bis 800 mmHg
SpO_{2}	0 bis 100\%
PR	25 bis 240 bpm
Leistungsbereich	0 bis 1000 mW
Genauigkeit	
tcpCO_{2}	TOSCA-Sensor 92, tc-Sensor 54:
	Besser als 1 mmHg (1% oder $10 \% \mathrm{CO}_{2}$)
	Besser als $3 \mathrm{mmHg}\left(33 \% \mathrm{CO}_{2}\right)$
	tc Sensor 84:
	Besser als 1 mmHg (1% oder $10 \% \mathrm{CO}_{2}$)
	Besser als $5 \mathrm{mmHg}\left(33 \% \mathrm{CO}_{2}\right)$
tcpO_{2}	tc-Sensor 84:

Besser als $1 \mathrm{mmHg}\left(0 \% \mathrm{O}_{2}\right)$
Besser als $3 \mathrm{mmHg}\left(21 \% \mathrm{O}_{2}\right)$
Besser als $5 \mathrm{mmHg}\left(50 \% \mathrm{O}_{2}\right)$
Besser als $25 \mathrm{mmHg}\left(90 \% \mathrm{O}_{2}\right)$

SpO_{2}	$\pm 3 \%$ (70 bis $100 \%)$
PR	$\pm 3 \mathrm{bpm}$
Power	$\pm 20 \%$ des Werts
iView	
CPU	Intel Pentium N4200 2,5 GHz
Speicher	8 GB
Festplatte	mSATA SSD 128 GB
OS	Windows 10
Schreiber	
Type	Thermodruck
Geschwindigkeit	$25 \mathrm{~mm} / \mathrm{s}, 50 \mathrm{~mm} / \mathrm{s}$
Nachzeichnung	Bis zu 3 (Papierbreite 50 mm , Papierlänge 20 m).

Unterstützt Aufzeichnungsmodul für zwei Steckplätze.
Alarme
Hörbarer Indikator Ja, 3 verschiedene Alarmtöne und Hinweiston
Sichtbarer Indikator Rote/gelbe/blaue LED und Anzeige der Alarmnachricht
Bietet AlarmSight-Infografikalarmanzeige.
Datenspeicher
Trenddaten $\quad>120$ Std. bei $1 \mathrm{~min}, 4$ Std. bei 5 s
Ereignisse 1000 Ereignisse, einschließlich Parameteralarme, Arrhythmieereignisse, technische Alarme usw.
NIBP 1000 Anwendungen
Auswertung von 12-Kanal-Ruhe-EKG-Ergebnissen 20 Anwendungen
Vollständige Offenlegung 48 Stunden für alle Parameter und Kurven (8G-Speicherkarte) 48 Stunden bei Maximum. Die spezifische Speicherzeit hängt von den gespeicherten Kurven und Wellenformen ab.
(2G-Speicherkarte)
OxyCRG
ST-Überprüfung
Minitrend 48 Stunden 120 Std. bei 1 min

Spezielle Funktionen
Klinisch-assistive Anwendungen (Clinical Assistive Applications, CAA): HemoSight ${ }^{\text {TM }}$, ST Graphic ${ }^{\text {TM }}$, SepsisSight ${ }^{\text {TM }}$, BoA Dashboard ${ }^{\text {TM }}$, EWS, GCS, 24-Stunden-
EKG-Zusammenfassung, Pulsanzeige
Unterstützung von Berechnungen (Medikament, Hämodynamik
Oxygenierung, Atmung, Niere) und Titrationstabelle.
Unterstützt kabellose Verbindung mit BeneVision TM80 und BP10
Unterstützung des nView-Fernanzeigetools
Wi-Fi-Kommunikation
Protokoll IEEE 802.11a/b/g/n
Modulationsmodus DSSS und OFDM
Betriebsfrequenz
IEEE $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}(2,4 \mathrm{G})$:
ETSI/FCC/KC: $\quad 2,4$ bis $2,483 \mathrm{GHz}$
MIC: $\quad 2,4$ bis $2,495 \mathrm{GHz}$
IEEE 802.11a/n (5 G):
ETSI: $\quad 5,15$ bis $5,35 \mathrm{GHz}, 5,47$ bis $5,725 \mathrm{GHz}$
FCC: $\quad 5,15$ bis $5,35 \mathrm{GHz}, 5,725$ bis $5,82 \mathrm{GHz}$
MIC: $\quad 5,15$ bis $5,35 \mathrm{GHz}$
$\mathrm{KC}: \quad 5,15$ bis $5,35 \mathrm{GHz}, 5,47$ bis $5,725 \mathrm{Ghz}$,
Kanalabstand $\quad 5 \mathrm{MHz}$ bei $2,4 \mathrm{GHz}(802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n})$
20 MHz bei $5 \mathrm{GHz}(802.11 \mathrm{a} / \mathrm{n})$
WLAN-Baud-Rate IEEE 802.11a: 6 bis 54 Mbps
IEEE 802.11b: 1 bis 11 Mbps
IEEE 802.11 g: 6 bis 54 Mbps
IEEE 802.11 n : 6,5 bis $72,2 \mathrm{Mbps}$
Ausgangsleistung $\quad<20 \mathrm{dBm}$ (CE-Anforderung: Erkennungsmodus

- RMS)
$<30 \mathrm{dBm}$ (FCC-Anforderung,
Betriebsmodus
Datensicherheit
Erkennungsmodus - maximale Leistung)
Infrastruktur
WPA-PSK, WPA2-PSK, WPA-Enterprise,
WPA2-Enterprise (EAP-FAST, EAP-TLS, EAP-TTLS, PEAP-GTC, PEAP-MSCHAPV2, PEAP-TLS, LEAP) Verschlüsselung:TKIP und AES
MPAN-Kommunikation
Modulationsmodus GFSK
Betriebsfrequenz $\quad 2402$ bis 2480 MHz
Kanalabstand $\quad 2 \mathrm{MHz}$
WLAN-Baud-Rate 1 Mbps
Ausgangsleistung $\quad \leq 2,5 \mathrm{~mW}$

Datensicherheit Privates Protokoll
MPAN wird für die Gerätekopplung für BeneVision TM80, das BP10
NIBP-Modul und BeneVision N-Patientenmonitor verwendet.

Ausgabe

Hilfsausgang
Standard
KG-Analogausgabe
Bandbreite (-3 dB ; Referenzfrequenz: 10 Hz)
Diagnosemodus: 0,05 bis 150 Hz
Monitormodus: 0,5 bis 40 Hz
Operationsmodus: 1 bis 20 Hz
ST-Modus: $\quad 0,05$ bis 40 Hz
QRS-Verzögerung $\quad \leq 25 \mathrm{~ms}$ (im Diagnosemodus ohne
Empfindlichkeit
Pulserhöhung
Signalamplitude: \quad Voh $\geq 2,5 \mathrm{~V}$
Pulsbreite: $\quad 10 \mathrm{~ms} \pm 5 \%$
Signalanstiegs- und Abstiegszeit:
$\leq 100 \mu \mathrm{~s}$
IBP-Analogausgabe
Bandbreite (-3 dB ; Referenzfrequenz: 10 Hz)
0 bis 40 Hz
Max.Ubertragungs-
30 ms
verzögerung
Empfindlichkeit $\quad 1 \mathrm{~V} / 100 \mathrm{mmHg}, \pm 5 \%$
Schnittstellen
Haupteinheit

$$
1 \text { AC-Stromanschluss }
$$

2 RJ45-Netzwerkanschlüsse, 100 Base TX, IEEE 802.3
6 USB 2.0-Anschlüsse
3 Nicht standardmäßige USB SMR-Anschlüsse
1 VP-Anschluss, VP1 für sekundäres Display
1 BNC-Anschluss
1 Isolektrischer Erdungsanschluss
Modulare iView
1 VP-Anschluss, VP2
4 USB 2.0-Anschlüsse
1 RJ45-Netzwerkanschluss, 100 Base TX, IEEE 802.3
Multifunktionsanschluss für DEFIB. SYNC und ANALOG OUTPUT
1 auf Multi-Parametermodul
Barcode-Scanner Unterstützung für 1D-und 2D-Barcodes
Tastatur und Maus Wird mit Kabel und kabellos unterstützt
Remote Control Wird unterstützt
Netzwerkdrucker Wird unterstützt
Batterie
Wiederaufladbarer Lithium-lon-Akku
Anzahl der Akkus 1
Kapazität
Betriebszeit
5600 mAh, 113 VDC
>1 Std
Beim Betrieb mit einem neuen vollständig aufgeladenen Akku bei $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ mit 12-Kanal-EKG, Resp, SpO2, 4-ch IBP, 2-ch Temp, CO_{2}, C.O.-Probenentnahme und automatischer NIBP-Messung alle 15 Minuten,
Bildschirmhelligkeit auf 5 und aktiviertem Wi-Fi.
Ladezeit 5 Std. auf 90% bei ausgeschaltetem Monitor.
Stromversorgunganforderungen
Spannung $\quad 100$ bis 240 VAC ($\pm 10 \%)$
Stromstärke $\quad 2,8$ bis $1,6 \mathrm{~A}$
Frequenz $\quad 50 \mathrm{~Hz} / 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$
Umgebung
Temperatur \quad Betrieb: 0 bis $40^{\circ} \mathrm{C}\left(32\right.$ bis $\left.104^{\circ} \mathrm{F}\right)$
Lagerung:- -20 bis $60^{\circ} \mathrm{C}\left(-4\right.$ bis $\left.140^{\circ} \mathrm{F}\right)$
Feuchtigkeit Betrieb: 15% bis 95% (nicht kondensierend)
Luftdruck Betrieb: 427,5 bis $805,5 \mathrm{mmHg}(57,0$ bis
$107,4 \mathrm{kPa}$)
Lagerung: 120 bis $805,5 \mathrm{mmHg}$ (16,0 bis
$107,4 \mathrm{kPa}$)
Sicherheit
Art des Schutzes Klasse
Schutzgrad MPM/IBP/C.O./NMT/EEG Modul: CF $\mathrm{ScvO}_{2} / \mathrm{CO}_{2} / \mathrm{AG} / \mathrm{BIS} / \mathrm{rSO}_{2}$ Modul: BF
Schutz vor dem Eindringen von Flüssigkeiten
IPX1
Einige Funktionen, die mit einem Asterisk gekennzeichnet sind, sind u.U. nicht verfügbar. Wenden Sie sich für aktuelle Informationen an Ihren lokalen Mindray-Vertreter.

